229 research outputs found

    Comment on "Dynamic range of nanotube- and nanowire-based electromechanical systems"

    Full text link
    We investigate the role of quantum effects (e.g. zero-point energy fluctuations) in the physics of nanotube- and nanowire-based electromechanical sensors as discussed in a recent article [Postma et al., Appl. Phys. Lett. 86, 223105 (2005)]. Employing the quantum fluctuation-dissipation theorem we find that these effects pose additional limits on the dynamic range of nanomechanical resonators.Comment: 1 page, 1 figure, Appl. Phys. Lett. (in print

    Local transport measurements on epitaxial graphene

    Full text link
    Growth of large-scale graphene is still accompanied by imperfections. By means of a four-tip STM/SEM the local structure of graphene grown on SiC(0001) was correlated with scanning electron microscope images and spatially resolved transport measurements. The systematic variation of probe spacings and substrate temperature has clearly revealed two-dimensional transport regimes of Anderson localization as well as of diffusive transport. The detailed analysis of the temperature dependent data demonstrates that the local on-top nano-sized contacts do not induce significant strain to the epitaxial graphene films.Comment: 3 figure

    Readout of carbon nanotube vibrations based on spin-phonon coupling

    Get PDF
    We propose a scheme for spin-based detection of the bending motion in suspended carbon-nanotubes, using the curvature-induced spin-orbit interaction. We show that the resulting effective spin-phonon coupling can be used to down-convert the high-frequency vibration-modulated spin-orbit field to spin-flip processes at a much lower frequency. This vibration-induced spin-resonance can be controlled with an axial magnetic field. We propose a Pauli spin blockade readout scheme and predict that the leakage current shows pronounced peaks as a function of the external magnetic field. Whereas the resonant peaks allow for frequency readout, the slightly off-resonant current is sensitive to the vibration amplitude.Comment: 3 pages(+), 3 figure

    Low B Field Magneto-Phonon Resonances in Single-Layer and Bilayer Graphene

    Full text link
    Many-body effects resulting from strong electron-electron and electron-phonon interactions play a significant role in graphene physics. We report on their manifestation in low B field magneto-phonon resonances in high quality exfoliated single-layer and bilayer graphene encapsulated in hexagonal boron nitride. These resonances allow us to extract characteristic effective Fermi velocities, as high as 1.20×1061.20 \times 10^6 m/s, for the observed "dressed" Landau level transitions, as well as the broadening of the resonances, which increases with Landau level index

    Asymmetric Franck-Condon factors in suspended carbon nanotube quantum dots

    Full text link
    Electronic states and vibrons in carbon nanotube quantum dots have in general different location and size. As a consequence, the conventional Anderson-Holstein model, coupling vibrons to the dot total charge only, may no longer be appropriated in general. Here we explicitly address the role of the spatial fluctuations of the electronic density, yielding space-dependent Franck-Condon factors. We discuss the consequent marked effects on transport which are compatible with recent measurements. This picture can be relevant for tunneling experiments in generic nano-electromechanical systems.Comment: 4+ pages, 3 figures (2 color, 1 BW

    Dry-transferred CVD graphene for inverted spin valve devices

    Full text link
    Integrating high-mobility graphene grown by chemical vapor deposition (CVD) into spin transport devices is one of the key tasks in graphene spintronics. We use a van der Waals pickup technique to transfer CVD graphene by hexagonal boron nitride (hBN) from the copper growth substrate onto predefined Co/MgO electrodes to build inverted spin valve devices. Two approaches are presented: (i) a process where the CVD-graphene/hBN stack is first patterned into a bar and then transferred by a second larger hBN crystal onto spin valve electrodes and (ii) a direct transfer of a CVD-graphene/hBN stack. We report record high spin lifetimes in CVD graphene of up to 1.75 ns at room temperature. Overall, the performances of our devices are comparable to devices fabricated from exfoliated graphene also revealing nanosecond spin lifetimes. We expect that our dry transfer methods pave the way towards more advanced device geometries not only for spintronic applications but also for CVD-graphene-based nanoelectronic devices in general where patterning of the CVD graphene is required prior to the assembly of final van der Waals heterostructures.Comment: 5 pages, 3 figure

    High mobility dry-transferred CVD bilayer graphene

    Full text link
    We report on the fabrication and characterization of high-quality chemical vapor-deposited (CVD) bilayer graphene (BLG). In particular, we demonstrate that CVD-grown BLG can mechanically be detached from the copper foil by an hexagonal boron nitride (hBN) crystal after oxidation of the copper-to-BLG interface. Confocal Raman spectroscopy reveals an AB-stacking order of the BLG crystals and a high structural quality. From transport measurements on fully encapsulated hBN/BLG/hBN Hall bar devices we extract charge carrier mobilities up to 180,000 cm2^2/(Vs) at 2 K and up to 40,000 cm2^2/(Vs) at 300 K, outperforming state-of-the-art CVD bilayer graphene devices. Moreover, we show an on-off ration of more than 10,000 and a band gap opening with values of up to 15 meV for a displacement field of 0.2 V/nm in such CVD grown BLG.Comment: 5 pages, 4 figure

    A world of smartphone experiments with the app phyphox

    Get PDF
    SMARTPHONES AS MEASUREMENT DEVICES The concept of the app phyphox is based on the simple idea that smartphones and tablets come with a plethora of sensors, which can be used for data acquisition in science education. Phyphox was developed at the RWTH Aachen University for this purpose and presents itself as an open source tool with many options to customise data sources, data analysis and data presentation, while not overwhelming students with these options while they use their own devices to discover the world. Experimentation with device sensors There are many situations in which these readily available measurement devices can enhance science education. These range from classical educational experiments that can be reproduced with household items (radial acceleration in a salad spinner), over casually discovering the world around us (determine the speed of an elevator with the pressure sensor) to projects on technical applications (build a Pitot tube based on this pressure sensor). DIY-Sensors with Arduino and MicroPython Beyond these typical experiments, phyphox can be used in modern microcontroller-based projects. Smartphone sensors can easily be combined with cheap external sensors using an Arduino or MicroPython library for phyphox. This allows us to combine the visualisation capabilities of the phone with the wide choice of sensors of DIY electronics and is accessible even to programming beginners. Collaborative experiments for large audiences While these examples are suitable on the scale of typical school classes, the connectivity of smartphones allows us to scale experimental data acquisition to large audiences. Automated data collection and analysis allow for entire lecture halls to participate in live experiments during a lecture and even worldwide experiments to determine Earth’s axial tilt have been demonstrated. FURTHER READING Sebastian Staacks, Simon Hütz, Heidrun Heinke, Christoph Stampfer. (2018). Advanced tools for smartphone-based experiments: phyphox. Physics Education, 53(4), 045009. https://doi.org/10.1088/1361-6552/aac05e Sebastian Staacks, Dominik Dorsel, Simon Hütz, Frank Stallmach, Tobias Splith, Heidrun Heinke, Christoph Stampfer. (2022). Collaborative smartphone experiments for large audiences with phyphox. European Journal of Physics, 43(5), 055702. https://doi.org/10.1088/1361-6404/ac783

    Diffractive paths for weak localization in quantum billiards

    Get PDF
    We study the weak localization effect in quantum transport through a clean ballistic cavity with regular classical dynamics. We address the question which paths account for the suppression of conductance through a system where disorder and chaos are absent. By exploiting both quantum and semiclassical methods, we unambiguously identify paths that are diffractively backscattered into the cavity (when approaching the lead mouths from the cavity interior) to play a key role. Diffractive scattering couples transmitted and reflected paths and is thus essential to reproduce the weak-localization peak in reflection and the corresponding anti-peak in transmission. A comparison of semiclassical calculations featuring these diffractive paths yields good agreement with full quantum calculations and experimental data. Our theory provides system-specific predictions for the quantum regime of few open lead modes and can be expected to be relevant also for mixed as well as chaotic systems.Comment: 5 pages, 3 figures, final version with extended discussion and added reference
    corecore